Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nat Commun ; 14(1): 3334, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20241659

ABSTRACT

COVID-19 patients at risk of severe disease may be treated with neutralising monoclonal antibodies (mAbs). To minimise virus escape from neutralisation these are administered as combinations e.g. casirivimab+imdevimab or, for antibodies targeting relatively conserved regions, individually e.g. sotrovimab. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to detect emerging drug resistance in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the antibody epitopes and for casirivimab+imdevimab multiple mutations are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal/therapeutic use , Immunotherapy , Mutation , Antibodies, Neutralizing , Antibodies, Viral
2.
Cell reports ; 2023.
Article in English | EuropePMC | ID: covidwho-2306169

ABSTRACT

Most existing studies characterising SARS-CoV-2-specific T cell responses are peptide based. This does not allow evaluation of whether tested peptides are processed and presented canonically. In this study, we use recombinant vaccinia virus (rVACV)-mediated expression of SARS-CoV-2 spike protein and SARS-CoV-2 infection of ACE-2-transduced B cell lines to evaluate overall T cell responses in a small cohort of recovered COVID-19 patients and uninfected donors vaccinated with ChAdOx1 nCoV-19. We show that rVACV expression of SARS-CoV-2 antigen can be used as an alternative to SARS-CoV-2 infection to evaluate T cell responses to naturally processed spike antigens. In addition, rVACV system can be used to evaluate the cross-reactivity of memory T cells to variants of concern (VOCs) and to identify epitope escape mutants. Finally, our data show that both natural infection and vaccination could induce multi-functional T cell responses with overall T cell responses remaining despite the identification of escape mutations. Graphical Yin et al. utilize two informative systems for evaluating overall T cell responses to SARS-CoV-2 and variants, enabling greater understanding of T cell responses to the virus, cross-reactivity to viral variants and the differences between vaccine- and infection-induced immunity to SARS-CoV-2, and other emerging viruses in the future.

4.
J Infect ; 86(6): 574-583, 2023 06.
Article in English | MEDLINE | ID: covidwho-2303587

ABSTRACT

BACKGROUND: Heterologous COVID vaccine priming schedules are immunogenic and effective. This report aims to understand the persistence of immune response to the viral vectored, mRNA and protein-based COVID-19 vaccine platforms used in homologous and heterologous priming combinations, which will inform the choice of vaccine platform in future vaccine development. METHODS: Com-COV2 was a single-blinded trial in which adults ≥ 50 years, previously immunised with single dose 'ChAd' (ChAdOx1 nCoV-19, AZD1222, Vaxzevria, Astrazeneca) or 'BNT' (BNT162b2, tozinameran, Comirnaty, Pfizer/BioNTech), were randomised 1:1:1 to receive a second dose 8-12 weeks later with either the homologous vaccine, or 'Mod' (mRNA-1273, Spikevax, Moderna) or 'NVX' (NVX-CoV2373, Nuvaxovid, Novavax). Immunological follow-up and the secondary objective of safety monitoring were performed over nine months. Analyses of antibody and cellular assays were performed on an intention-to-treat population without evidence of COVID-19 infection at baseline or for the trial duration. FINDINGS: In April/May 2021, 1072 participants were enrolled at a median of 9.4 weeks after receipt of a single dose of ChAd (N = 540, 45% female) or BNT (N = 532, 39% female) as part of the national vaccination programme. In ChAd-primed participants, ChAd/Mod had the highest anti-spike IgG from day 28 through to 6 months, although the heterologous vs homologous geometric mean ratio (GMR) dropped from 9.7 (95% CI (confidence interval): 8.2, 11.5) at D28 to 6.2 (95% CI: 5.0, 7.7) at D196. The heterologous/homologous GMR for ChAd/NVX similarly dropped from 3.0 (95% CI:2.5,3.5) to 2.4 (95% CI:1.9, 3.0). In BNT-primed participants, decay was similar between heterologous and homologous schedules with BNT/Mod inducing the highest anti-spike IgG for the duration of follow-up. The adjusted GMR (aGMR) for BNT/Mod compared with BNT/BNT increased from 1.36 (95% CI: 1.17, 1.58) at D28 to 1.52 (95% CI: 1.21, 1.90) at D196, whilst for BNT/NVX this aGMR was 0.55 (95% CI: 0.47, 0.64) at day 28 and 0.62 (95% CI: 0.49, 0.78) at day 196. Heterologous ChAd-primed schedules produced and maintained the largest T-cell responses until D196. Immunisation with BNT/NVX generated a qualitatively different antibody response to BNT/BNT, with the total IgG significantly lower than BNT/BNT during all follow-up time points, but similar levels of neutralising antibodies. INTERPRETATION: Heterologous ChAd-primed schedules remain more immunogenic over time in comparison to ChAd/ChAd. BNT-primed schedules with a second dose of either mRNA vaccine also remain more immunogenic over time in comparison to BNT/NVX. The emerging data on mixed schedules using the novel vaccine platforms deployed in the COVID-19 pandemic, suggest that heterologous priming schedules might be considered as a viable option sooner in future pandemics. ISRCTN: 27841311 EudraCT:2021-001275-16.


Subject(s)
COVID-19 , Vaccines , Adult , Female , Humans , Male , COVID-19 Vaccines , ChAdOx1 nCoV-19 , BNT162 Vaccine , Pandemics , Single-Blind Method , COVID-19/prevention & control , Vaccination , Immunity , Immunoglobulin G , Antibodies, Viral
5.
Med (New York, NY) ; 2023.
Article in English | EuropePMC | ID: covidwho-2272796

ABSTRACT

Background Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARS-CoV-2. However, the maintenance of such responses – and hence protection from disease – requires careful characterisation. In a large prospective study of UK healthcare workers (Protective immunity from T cells in Healthcare workers (PITCH), within the larger SARS-CoV-2 immunity & reinfection evaluation (SIREN) study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Methods Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. Findings We make three observations: Firstly, the dynamics of humoral and cellular responses differ;binding and neutralising antibodies declined whereas T and memory B cell responses were maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels, broadened neutralising activity against variants of concern including omicron BA.1, BA.2 and BA.5, and boosted T cell responses above the 6-month level post dose 2. Thirdly, prior infection maintained its impact driving larger and broader T cell responses compared with never-infected people – a feature maintained until 6 months after the third dose. Conclusions Broadly cross-reactive T cell responses are well maintained over time – especially in those with combined vaccine and infection-induced immunity ("hybrid” immunity) – and may contribute to continued protection against severe disease. Funding Department for Health and Social Care, Medical Research Council Graphical abstract Moore et al. studied antibody and cellular responses to COVID-19 vaccines before and after dose 3. Antibody responses waned, but T cell responses were well maintained. T cells recognised Omicron variants better and for longer than antibodies. Differences due to vaccine regimen and previous infection evened out over time.

6.
Cell reports ; 2023.
Article in English | EuropePMC | ID: covidwho-2257201

ABSTRACT

In November 2021 Omicron BA.1, containing a raft of new spike mutations emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or SARS-CoV-2 infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional RBD amino-acid substitutions compared to BA.2. We describe a panel of 25 potent mAbs generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titre of vaccine or BA.1, BA.2 or BA.4/5 immune serum. Graphical Dijokaite-Guraliuc et al. analyse potently neutralizing antibodies from vaccinated individuals with BA.2 breakthrough infections. The antibodies bind 3 sites on the receptor binding domain, 2 in common with early pandemic antibodies. Mutations in more recent variants map closely to these sites leading to reduced neutralization in all but one mAb.

7.
Cell Rep ; 42(4): 112271, 2023 Mar 07.
Article in English | MEDLINE | ID: covidwho-2257202

ABSTRACT

In November 2021, Omicron BA.1, containing a raft of new spike mutations, emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 and then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional receptor-binding domain (RBD) amino acid substitutions compared with BA.2. We describe a panel of 25 potent monoclonal antibodies (mAbs) generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titer of vaccine or BA.1, BA.2, or BA.4/5 immune serum.

8.
iScience ; 26(2): 105928, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2165434

ABSTRACT

Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.

9.
Elife ; 92020 08 21.
Article in English | MEDLINE | ID: covidwho-2155740

ABSTRACT

We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using naso-/oro-pharyngeal PCR testing and immunoassays for IgG antibodies. 1128/10,034 (11.2%) staff had evidence of Covid-19 at some time. Using questionnaire data provided on potential risk-factors, staff with a confirmed household contact were at greatest risk (adjusted odds ratio [aOR] 4.82 [95%CI 3.45-6.72]). Higher rates of Covid-19 were seen in staff working in Covid-19-facing areas (22.6% vs. 8.6% elsewhere) (aOR 2.47 [1.99-3.08]). Controlling for Covid-19-facing status, risks were heterogenous across the hospital, with higher rates in acute medicine (1.52 [1.07-2.16]) and sporadic outbreaks in areas with few or no Covid-19 patients. Covid-19 intensive care unit staff were relatively protected (0.44 [0.28-0.69]), likely by a bundle of PPE-related measures. Positive results were more likely in Black (1.66 [1.25-2.21]) and Asian (1.51 [1.28-1.77]) staff, independent of role or working location, and in porters and cleaners (2.06 [1.34-3.15]).


Subject(s)
Coronavirus Infections/epidemiology , Health Personnel/statistics & numerical data , Pneumonia, Viral/epidemiology , Adolescent , Adult , Age Factors , Aged , Asymptomatic Infections/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Hospitals, Teaching/statistics & numerical data , Humans , Incidence , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Risk , SARS-CoV-2 , Surveys and Questionnaires , United Kingdom/epidemiology , Young Adult
10.
Cell Rep ; 42(1): 111903, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2158574

ABSTRACT

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused successive global waves of infection. These variants, with multiple mutations in the spike protein, are thought to facilitate escape from natural and vaccine-induced immunity and often increase in affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor-binding domain (RBD). Here, we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared with BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection, which may explain the rapid spread in India, where where there is a high background of Delta infection. ACE2 affinity appears to be prioritized over greater escape.


Subject(s)
COVID-19 , Hepatitis D , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Antibodies
12.
Lancet Respir Med ; 10(11): 1049-1060, 2022 11.
Article in English | MEDLINE | ID: covidwho-2106218

ABSTRACT

BACKGROUND: Priming COVID-19 vaccine schedules have been deployed at variable intervals globally, which might influence immune persistence and the relative importance of third-dose booster programmes. Here, we report exploratory analyses from the Com-COV trial, assessing the effect of 4-week versus 12-week priming intervals on reactogenicity and the persistence of immune response up to 6 months after homologous and heterologous priming schedules using the vaccines BNT162b2 (tozinameran, Pfizer/BioNTech) and ChAdOx1 nCoV-19 (AstraZeneca). METHODS: Com-COV was a participant-masked, randomised immunogenicity trial. For these exploratory analyses, we used the trial's general cohort, in which adults aged 50 years or older were randomly assigned to four homologous and four heterologous vaccine schedules using BNT162b2 and ChAdOx1 nCoV-19 with 4-week or 12-week priming intervals (eight groups in total). Immunogenicity analyses were done on the intention-to-treat (ITT) population, comprising participants with no evidence of SARS-CoV-2 infection at baseline or for the trial duration, to assess the effect of priming interval on humoral and cellular immune response 28 days and 6 months post-second dose, in addition to the effects on reactogenicity and safety. The Com-COV trial is registered with the ISRCTN registry, 69254139 (EudraCT 2020-005085-33). FINDINGS: Between Feb 11 and 26, 2021, 730 participants were randomly assigned in the general cohort, with 77-89 per group in the ITT analysis. At 28 days and 6 months post-second dose, the geometric mean concentration of anti-SARS-CoV-2 spike IgG was significantly higher in the 12-week interval groups than in the 4-week groups for homologous schedules. In heterologous schedule groups, we observed a significant difference between intervals only for the BNT162b2-ChAdOx1 nCoV-19 group at 28 days. Pseudotyped virus neutralisation titres were significantly higher in all 12-week interval groups versus 4-week groups, 28 days post-second dose, with geometric mean ratios of 1·4 (95% CI 1·1-1·8) for homologous BNT162b2, 1·5 (1·2-1·9) for ChAdOx1 nCoV-19-BNT162b2, 1·6 (1·3-2·1) for BNT162b2-ChAdOx1 nCoV-19, and 2·4 (1·7-3·2) for homologous ChAdOx1 nCoV-19. At 6 months post-second dose, anti-spike IgG geometric mean concentrations fell to 0·17-0·24 of the 28-day post-second dose value across all eight study groups, with only homologous BNT162b2 showing a slightly slower decay for the 12-week versus 4-week interval in the adjusted analysis. The rank order of schedules by humoral response was unaffected by interval, with homologous BNT162b2 remaining the most immunogenic by antibody response. T-cell responses were reduced in all 12-week priming intervals compared with their 4-week counterparts. 12-week schedules for homologous BNT162b2 and ChAdOx1 nCoV-19-BNT162b2 were up to 80% less reactogenic than 4-week schedules. INTERPRETATION: These data support flexibility in priming interval in all studied COVID-19 vaccine schedules. Longer priming intervals might result in lower reactogenicity in schedules with BNT162b2 as a second dose and higher humoral immunogenicity in homologous schedules, but overall lower T-cell responses across all schedules. Future vaccines using these novel platforms might benefit from schedules with long intervals. FUNDING: UK Vaccine Taskforce and National Institute for Health and Care Research.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , BNT162 Vaccine , COVID-19/prevention & control , Immunization, Secondary , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G
14.
Cell ; 185(14): 2422-2433.e13, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1881762

ABSTRACT

The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests , SARS-CoV-2/genetics , South Africa
15.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: covidwho-1861743

ABSTRACT

The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal outcomes with coronavirus disease 2019 (COVID-19) is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to an intensive care unit (ICU) with fatal COVID-19 outcomes, but not in individuals with nonfatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to an ICU with fatal and nonfatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an "original antigenic sin" type response.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Antibody Formation , Epitopes , Humans , SARS-CoV-2
16.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1850795

ABSTRACT

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Subject(s)
Antibodies, Monoclonal , COVID-19 Vaccines/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Viral , COVID-19 , COVID-19 Vaccines/administration & dosage , Epitopes , Humans , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
17.
mSphere ; 7(3): e0091321, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1832362

ABSTRACT

New variants of SARS-CoV-2 are continuing to emerge and dominate the global sequence landscapes. Several variants have been labeled variants of concern (VOCs) because they may have a transmission advantage, increased risk of morbidity and/or mortality, or immune evasion upon a background of prior infection or vaccination. Placing the VOCs in context with the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Dominant genome sequences and the population genetics of SARS-CoV-2 in nasopharyngeal swabs from hospitalized patients were characterized. Nonsynonymous changes at a minor variant level were identified. These populations were generally preserved when isolates were amplified in cell culture. To place the Alpha, Beta, Delta, and Omicron VOCs in context, their growth was compared to clinical isolates of different lineages from earlier in the pandemic. The data indicated that the growth in cell culture of the Beta variant was more than that of the other variants in Vero E6 cells but not in hACE2-A549 cells. Looking at each time point, Beta grew more than the other VOCs in hACE2-A549 cells at 24 to 48 h postinfection. At 72 h postinfection there was no difference in the growth of any of the variants in either cell line. Overall, this work suggested that exploring the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants. In the context of variation seen in other coronaviruses, the variants currently observed for SARS-CoV-2 are very similar in terms of their clinical spectrum of disease. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19. The virus has spread across the planet, causing a global pandemic. In common with other coronaviruses, SARS-CoV-2 genomes can become quite diverse as a consequence of replicating inside cells. This has given rise to multiple variants from the original virus that infected humans. These variants may have different properties and in the context of a widespread vaccination program may render vaccines less effective. Our research confirms the degree of genetic diversity of SARS-CoV-2 in patients. By comparing the growth of previous variants to the pattern seen with four variants of concern (VOCs) (Alpha, Beta, Delta, and Omicron), we show that, at least in cells, Beta variant growth exceeds that of Alpha, Delta, and Omicron VOCs at 24 to 48 h in both Vero E6 and hACE2-A549 cells, but by 72 h postinfection, the amount of virus is not different from that of the other VOCs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Phenotype , SARS-CoV-2/genetics
18.
Lancet ; 399(10324): 521-529, 2022 02 05.
Article in English | MEDLINE | ID: covidwho-1815310

ABSTRACT

INTRODUCTION: The inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac, Sinovac) has been widely used in a two-dose schedule. We assessed whether a third dose of the homologous or a different vaccine could boost immune responses. METHODS: RHH-001 is a phase 4, participant masked, two centre, safety and immunogenicity study of Brazilian adults (18 years and older) in São Paulo or Salvador who had received two doses of CoronaVac 6 months previously. The third heterologous dose was of either a recombinant adenoviral vectored vaccine (Ad26.COV2-S, Janssen), an mRNA vaccine (BNT162b2, Pfizer-BioNTech), or a recombinant adenoviral-vectored ChAdOx1 nCoV-19 vaccine (AZD1222, AstraZeneca), compared with a third homologous dose of CoronaVac. Participants were randomly assigned (5:6:5:5) by a RedCAP computer randomisation system stratified by site, age group (18-60 years or 61 years and over), and day of randomisation, with a block size of 42. The primary outcome was non-inferiority of anti-spike IgG antibodies 28 days after the booster dose in the heterologous boost groups compared with homologous regimen, using a non-inferiority margin for the geometric mean ratio (heterologous vs homologous) of 0·67. Secondary outcomes included neutralising antibody titres at day 28, local and systemic reactogenicity profiles, adverse events, and serious adverse events. This study was registered with Registro Brasileiro de Ensaios Clínicos, number RBR-9nn3scw. FINDINGS: Between Aug 16, and Sept 1, 2021, 1240 participants were randomly assigned to one of the four groups, of whom 1239 were vaccinated and 1205 were eligible for inclusion in the primary analysis. Antibody concentrations were low before administration of a booster dose with detectable neutralising antibodies of 20·4% (95% CI 12·8-30·1) in adults aged 18-60 years and 8·9% (4·2-16·2) in adults 61 years or older. From baseline to day 28 after the booster vaccine, all groups had a substantial rise in IgG antibody concentrations: the geometric fold-rise was 77 (95% CI 67-88) for Ad26.COV2-S, 152 (134-173) for BNT162b2, 90 (77-104) for ChAdOx1 nCoV-19, and 12 (11-14) for CoronaVac. All heterologous regimens had anti-spike IgG responses at day 28 that were superior to homologous booster responses: geometric mean ratios (heterologous vs homologous) were 6·7 (95% CI 5·8-7·7) for Ad26.COV2-S, 13·4 (11·6-15·3) for BNT162b2, and 7·0 (6·1-8·1) for ChAdOx1 nCoV-19. All heterologous boost regimens induced high concentrations of pseudovirus neutralising antibodies. At day 28, all groups except for the homologous boost in the older adults reached 100% seropositivity: geometric mean ratios (heterologous vs homologous) were 8·7 (95% CI 5·9-12·9) for Ad26.COV2-S vaccine, 21·5 (14·5-31·9) for BNT162b2, and 10·6 (7·2-15·6) for ChAdOx1 nCoV-19. Live virus neutralising antibodies were also boosted against delta (B.1.617.2) and omicron variants (B.1.1.529). There were five serious adverse events. Three of which were considered possibly related to the vaccine received: one in the BNT162b2 group and two in the Ad26.COV2-S group. All participants recovered and were discharged home. INTERPRETATION: Antibody concentrations were low at 6 months after previous immunisation with two doses of CoronaVac. However, all four vaccines administered as a third dose induced a significant increase in binding and neutralising antibodies, which could improve protection against infection. Heterologous boosting resulted in more robust immune responses than homologous boosting and might enhance protection. FUNDING: Ministry of Health, Brazil.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Brazil , ChAdOx1 nCoV-19 , Female , Humans , Immunization, Secondary , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2 , Single-Blind Method , Vaccines, Inactivated
19.
J Infect ; 84(6): 795-813, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778315

ABSTRACT

OBJECTIVES: To evaluate the persistence of immunogenicity three months after third dose boosters. METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose. The analysis was conducted using all randomised participants who were SARS-CoV-2 naïve during the study. RESULTS: Amongst the 2883 participants randomised, there were 2422 SARS-CoV-2 naïve participants until D84 visit included in the analysis with median age of 70 (IQR: 30-94) years. In the participants who had two initial doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd), schedules using mRNA vaccines as third dose have the highest anti-spike IgG at D84 (e.g. geometric mean concentration of 8674 ELU/ml (95% CI: 7461-10,085) following ChAd/ChAd/BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT)). However, in people who had two initial doses of BNT there was no significant difference at D84 in people given ChAd versus BNT (geometric mean ratio (GMR) of 0.95 (95%CI: 0.78, 1.15). Also, people given Ad26.COV2.S (Janssen; hereafter referred to as Ad26) as a third dose had significantly higher anti-spike IgG at D84 than BNT (GMR of 1.20, 95%CI: 1.01,1.43). Responses at D84 between people who received BNT (15 µg) or BNT (30 µg) after ChAd/ChAd or BNT/BNT were similar, with anti-spike IgG GMRs of half-BNT (15 µg) versus BNT (30 µg) ranging between 0.74-0.86. The decay rate of cellular responses were similar between all the vaccine schedules and doses. CONCLUSIONS: 84 days after a third dose of COVID-19 vaccine the decay rates of humoral response were different between vaccines. Adenoviral vector vaccine anti-spike IgG concentrations at D84 following BNT/BNT initial doses were similar to or even higher than for a three dose (BNT/BNT/BNT) schedule. Half dose BNT immune responses were similar to full dose responses. While high antibody tires are desirable in situations of high transmission of new variants of concern, the maintenance of immune responses that confer long-lasting protection against severe disease or death is also of critical importance. Policymakers may also consider adenoviral vector, fractional dose of mRNA, or other non-mRNA vaccines as third doses.


Subject(s)
COVID-19 , Viral Vaccines , Ad26COVS1 , Adult , Aged , Aged, 80 and over , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Middle Aged , SARS-CoV-2 , United Kingdom , mRNA Vaccines
20.
Clin Infect Dis ; 74(7): 1208-1219, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1704072

ABSTRACT

BACKGROUND: Natural and vaccine-induced immunity will play a key role in controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. METHODS: In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, United Kingdom, we investigated the protection from symptomatic and asymptomatic polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after 1 versus 2 vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. RESULTS: In total, 13 109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses), and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and 2 vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95% confidence interval {CI} < .01-.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [95% CI .02-.38]) and 85% (0.15 [95% CI .08-.26]), respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [95% CI .21-.52]) and any PCR-positive result by 64% (0.36 [95% CI .26-.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. CONCLUSIONS: Natural infection resulting in detectable anti-spike antibodies and 2 vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Cohort Studies , Health Personnel , Humans , Immunoglobulins , Incidence , Longitudinal Studies , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL